Entanglement-assisted capacities of compound quantum channels
نویسندگان
چکیده
منابع مشابه
Entanglement-assisted classical capacities of compound and arbitrarily varying quantum channels
We consider classical message transmission under entanglement assistance for compound memoryless and arbitrarily varying quantum channels. In both cases, we prove general coding theorems together with corresponding weak converse bounds. In this way, we obtain single-letter characterizations of the entanglement-assisted classical capacities for both channel models. Moreover, we show that the ent...
متن کاملSecrecy capacities of compound quantum wiretap channels and applications
We determine the secrecy capacity of the compound channel with quantum wiretapper and channel state information at the transmitter. Moreover, we derive a lower bound on the secrecy capacity of this channel without channel state information and determine the secrecy capacity of the compound classical-quantum wiretap channel with channel state information at the transmitter. We use this result to...
متن کاملClassical Capacities of Averaged and Compound Quantum Channels
We determine the capacity of compound classicalquantum channels. As a consequence we obtain the capacity formula for the averaged classical-quantum channels. The capacity result for compound channels demonstrates, as in the classical setting, the existence of reliable universal classical-quantum codes in scenarios where the only a priori information about the channel used for the transmission o...
متن کاملEntanglement-Assisted Classical Capacity of Noisy Quantum Channels
Prior entanglement between sender and receiver, which exactly doubles the classical capacity of a noiseless quantum channel, can increase the classical capacity of some noisy quantum channels by an arbitrarily large constant factor depending on the channel, relative to the best known classical capacity achievable without entanglement. The enhancement factor is greatest for very noisy channels, ...
متن کاملQuantum capacities of bosonic channels.
We investigate the capacity of bosonic quantum channels for the transmission of quantum information. We calculate the quantum capacity for a class of Gaussian channels, including channels describing optical fibers with photon losses, by proving that Gaussian encodings are optimal. For arbitrary channels we show that achievable rates can be determined from few measurable parameters by proving th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2017
ISSN: 0018-9448,1557-9654
DOI: 10.1109/tit.2017.2672981